Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electrochemiluminescent pH sensor measured by the emission potential of TiO2 nanocrystals and its biosensing application.

Identifieur interne : 000197 ( Main/Exploration ); précédent : 000196; suivant : 000198

Electrochemiluminescent pH sensor measured by the emission potential of TiO2 nanocrystals and its biosensing application.

Auteurs : RBID : pubmed:24802560

Abstract

This work reports for the first time a potential-based nano-electrochemiluminescent (ECL) pH sensor, using anatase TiO2 nanocrystals (NCs) as the ECL probe. The first ECL peak potential of the TiO2 NCs shifted negatively with increasing pH, showing a linear range from -0.47 V (vs Ag/AgCl) at pH 3 to -1.06 V at pH 10. This phenomenon was attributed to the absorption of 'potential-determining ions' of OH(-) on the surface of TiO2 NCs, leading to larger impedance of the electron injection. Other common 'potential-determining ions', such as phosphate, induced a slight potential shift of 0.03 V at a concentration of 0.1 M. Using urease as an enzyme model, a urea biosensor was developed by the simultaneous modification of urease and TiO2 NCs on indium-tin oxide (ITO) electrodes. The biosensor, measured on the basis of the pH increase caused by the enzyme catalysis reaction, had a linear range of 0.01-2.0 mM, with a potential shift of 0.175 V. The as-prepared pH sensor, which has simple construction procedures and acceptable sensitivity and selectivity, may provide new avenues for the construction of ECL bioanalytical methodologies. Copyright © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/bio.2697
PubMed: 24802560

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Electrochemiluminescent pH sensor measured by the emission potential of TiO2 nanocrystals and its biosensing application.</title>
<author>
<name sortKey="Liu, Xuan" uniqKey="Liu X">Xuan Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Clinical Laboratory, Second Affiliated Hospital of Southeast University, Nanjing, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Clinical Laboratory, Second Affiliated Hospital of Southeast University, Nanjing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Nianyue" uniqKey="Wang N">Nianyue Wang</name>
</author>
<author>
<name sortKey="Zhao, Wei" uniqKey="Zhao W">Wei Zhao</name>
</author>
<author>
<name sortKey="Jiang, Hui" uniqKey="Jiang H">Hui Jiang</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2014">2014</date>
<idno type="doi">10.1002/bio.2697</idno>
<idno type="RBID">pubmed:24802560</idno>
<idno type="pmid">24802560</idno>
<idno type="wicri:Area/Main/Corpus">000015</idno>
<idno type="wicri:Area/Main/Curation">000015</idno>
<idno type="wicri:Area/Main/Exploration">000197</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This work reports for the first time a potential-based nano-electrochemiluminescent (ECL) pH sensor, using anatase TiO2 nanocrystals (NCs) as the ECL probe. The first ECL peak potential of the TiO2 NCs shifted negatively with increasing pH, showing a linear range from -0.47 V (vs Ag/AgCl) at pH 3 to -1.06 V at pH 10. This phenomenon was attributed to the absorption of 'potential-determining ions' of OH(-) on the surface of TiO2 NCs, leading to larger impedance of the electron injection. Other common 'potential-determining ions', such as phosphate, induced a slight potential shift of 0.03 V at a concentration of 0.1 M. Using urease as an enzyme model, a urea biosensor was developed by the simultaneous modification of urease and TiO2 NCs on indium-tin oxide (ITO) electrodes. The biosensor, measured on the basis of the pH increase caused by the enzyme catalysis reaction, had a linear range of 0.01-2.0 mM, with a potential shift of 0.175 V. The as-prepared pH sensor, which has simple construction procedures and acceptable sensitivity and selectivity, may provide new avenues for the construction of ECL bioanalytical methodologies. Copyright © 2014 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">24802560</PMID>
<DateCreated>
<Year>2014</Year>
<Month>5</Month>
<Day>7</Day>
</DateCreated>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-7243</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2014</Year>
<Month>May</Month>
<Day>7</Day>
</PubDate>
</JournalIssue>
<Title>Luminescence : the journal of biological and chemical luminescence</Title>
<ISOAbbreviation>Luminescence</ISOAbbreviation>
</Journal>
<ArticleTitle>Electrochemiluminescent pH sensor measured by the emission potential of TiO2 nanocrystals and its biosensing application.</ArticleTitle>
<Pagination>
<MedlinePgn></MedlinePgn>
</Pagination>
<ELocationID EIdType="doi">10.1002/bio.2697</ELocationID>
<Abstract>
<AbstractText NlmCategory="UNLABELLED">This work reports for the first time a potential-based nano-electrochemiluminescent (ECL) pH sensor, using anatase TiO2 nanocrystals (NCs) as the ECL probe. The first ECL peak potential of the TiO2 NCs shifted negatively with increasing pH, showing a linear range from -0.47 V (vs Ag/AgCl) at pH 3 to -1.06 V at pH 10. This phenomenon was attributed to the absorption of 'potential-determining ions' of OH(-) on the surface of TiO2 NCs, leading to larger impedance of the electron injection. Other common 'potential-determining ions', such as phosphate, induced a slight potential shift of 0.03 V at a concentration of 0.1 M. Using urease as an enzyme model, a urea biosensor was developed by the simultaneous modification of urease and TiO2 NCs on indium-tin oxide (ITO) electrodes. The biosensor, measured on the basis of the pH increase caused by the enzyme catalysis reaction, had a linear range of 0.01-2.0 mM, with a potential shift of 0.175 V. The as-prepared pH sensor, which has simple construction procedures and acceptable sensitivity and selectivity, may provide new avenues for the construction of ECL bioanalytical methodologies. Copyright © 2014 John Wiley & Sons, Ltd.</AbstractText>
<CopyrightInformation>Copyright © 2014 John Wiley & Sons, Ltd.</CopyrightInformation>
</Abstract>
<AuthorList>
<Author>
<LastName>Liu</LastName>
<ForeName>Xuan</ForeName>
<Initials>X</Initials>
<Affiliation>Department of Clinical Laboratory, Second Affiliated Hospital of Southeast University, Nanjing, People's Republic of China.</Affiliation>
</Author>
<Author>
<LastName>Wang</LastName>
<ForeName>Nianyue</ForeName>
<Initials>N</Initials>
</Author>
<Author>
<LastName>Zhao</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
</Author>
<Author>
<LastName>Jiang</LastName>
<ForeName>Hui</ForeName>
<Initials>H</Initials>
</Author>
</AuthorList>
<Language>ENG</Language>
<PublicationTypeList>
<PublicationType>JOURNAL ARTICLE</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>5</Month>
<Day>7</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<MedlineTA>Luminescence</MedlineTA>
<NlmUniqueID>100889025</NlmUniqueID>
<ISSNLinking>1522-7235</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">TiO2 nanocrystals</Keyword>
<Keyword MajorTopicYN="N">bioanalysis</Keyword>
<Keyword MajorTopicYN="N">electrochemiluminescence (ECL)</Keyword>
<Keyword MajorTopicYN="N">pH sensor</Keyword>
<Keyword MajorTopicYN="N">potential</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>2</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>3</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>4</Month>
<Day>2</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/bio.2697</ArticleId>
<ArticleId IdType="pubmed">24802560</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000197 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000197 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24802560
   |texte=   Electrochemiluminescent pH sensor measured by the emission potential of TiO2 nanocrystals and its biosensing application.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24802560" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024